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Abstract

Reconstructing gene regulatory networks from large-scale heteroge-
neous data is a key challenge in biology. In multi-omics data analysis, net-
works based on pairwise statistical association measures remain popular,
as they are easy to build and understand. In the presence of mixed-type
(discrete and continuous) data, however, the choice of good association
measures remains an important issue. We propose here a novel approach
based on the Gaussian copula, the parameters of which represent the links
of the network. Novel properties of the model are obtained to guide the
interpretation of the network. To estimate the copula parameters, we
calculated a semiparametric pairwise likelihood for mixed data. In an
extensive simulation study, we showed that the proposed estimation pro-
cedure was able to accurately estimate the copula correlation matrix. The
proposed methodology was also applied to a real ICGC dataset on breast
cancer, and is implemented in a freely available R package heterocop.

Keywords: Gaussian copula; mixed-type data; multi-omics; correlation net-
work analysis; semi-parametric estimation.

1 Introduction

The recent development of high-throughput sequencing technologies provides
access to a large amount of omics data of various types (transcriptomics, pro-
teomics, metabolomics, metagenomics, epigenetics). To better understand the
regulatory mechanisms that underlie these data, the so-called correlation net-
works depict statistical associations between pairs of measurements, both intra-
and inter-type. A major statistical challenge underlying the construction of cor-
relation networks is the heterogeneous nature of the data. Indeed, RNA-seq data
for instance are count data, whereas protein abundances are continuous and mu-
tation encoding is often binary. Existing methods such as WGCNA [Langfelder
and Horvath, 2008] rely on Pearson’s correlation coefficient, and are therefore
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limited to linear relationships between variables. Another possibility would be to
base the construction of the correlation network on Kendall’s tau or Spearman’s
rho. However, these coefficients are not well-adapted when at least one variable
is discrete [Nešlehová, 2007, Mesfioui et al., 2022, Kendall, 1945]. Moreover,
the lack of an underlying model may be an impediment to further statistical
investigation, for instance the simulation of new data or the inclusion of covari-
ables in the experimental design. The goal of this paper is therefore to propose
a novel approach to correlation network analysis of mixed-type data, based on
the Gaussian copula.

The Gaussian copula model relies on the assumption that the observed vari-
ables are transformations of a hidden Gaussian vector, and enables to link their
joint cumulative distribution function (CDF) to a Gaussian CDF while preserv-
ing their marginal distributions. The Gaussian copula model corresponds to the
Nonparanormal distribution in the continuous case [Liu et al., 2009], but can be
extended to discrete and mixed variables. With this approach, for instance, it is
possible to build a joint CDF for a Poisson, a Negative Binomial and a Gamma
random variable, which enables to deal with biological data of various nature.

As biological data do not perfectly follow a pre-defined distribution, a semi-
parametric approach has been proposed in [Fan et al., 2017, Dey and Zipunnikov,
2022]. Indeed, Spearman’s rho and Kendall’s tau are estimated first on the
observed data, and bridge functions that link these correlation coefficients to
the copula correlation coefficients are presented.

We introduce a more direct, likelihood-based approach. We provide an ex-
plicit expression of the pseudo-likelihood in the mixed case of continuous and
discrete variables, and give a detailed theoretical proof of its calculation. As
multi-omics data are often high-dimensional, a pairwise likelihood estimator is
built. In order to avoid assumptions on the distribution of the marginals, we
estimate the CDFs empirically. We show the equivalence between the presence
of a block-wise diagonal structure in the copula correlation matrix and block-
wise mutual independence in the observed data. We characterize the lower and
upper extreme values of the copula parameter in terms of the observed data
when a Bernoulli distribution is involved. This provides an interpretation of
the copula correlation coefficients in terms of association relationships between
the observed variables. The performance of the proposed method is illustrated
in an extensive simulation study. An application to a real ICGC [Zhang et al.,
2019] dataset containing tumoral samples of women affected by breast cancer is
carried out.

The rest of the paper is as follows. Section 2 presents the model and its
dependence properties. The estimation method is given in Section 3. Section 4
presents the simulation studies and Section 5 the real data analysis. A discussion
section closes the paper.
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2 The model

Let (X1, . . . , Xd) be a random vector with cumulative distribution function
(CDF) given by

F (x1, ..., xd) = CΣ(F1(x1), . . . , Fd(xd))

≡ ΦΣ(Φ−1(F1(x1)), ...,Φ−1(Fd(xd)))
(1)

where F1, . . . , Fd denote the marginal CDFs of the variables X1, . . . , Xd, CΣ

denotes the Gaussian copula parameterized by the correlation matrix Σ, ΦΣ

the centered Gaussian multivariate CDF of correlation matrix Σ, and Φ−1 the
inverse of the standard Normal CDF Φ. It can be checked that the right-hand
side of (1) indeed is a well-defined CDF with marginals F1, . . . , Fd [Sklar, 1973,
Nelsen, 2007]. One can note that model (1) corresponds to a latent Gaussian
variable structure where, if (Z1, ...., Zd) ∼ N (0,Σ) is a centered Gaussian vector
with correlation matrix Σ, then each Xj can be expressed as Xj = F←j (Φ(Zj)).
Note that F←j denotes the generalized inverse function of Fj , that is, F←j (u) =
inf{x : Fj(x) ≥ u}. With model (1) we do not assume that the observed
variables X1, . . . , Xd are Gaussian. Only the latent variables Z1, . . . , Zd are.
In model (1) the marginal distributions F1, . . . , Fd of the observed variables
X1, . . . , Xd are arbitrary. In particular, there can be a mix of continuous and
discrete variables. Model (1) also provides us with an explicit expression of the
joint CDF of the variables as a function of their marginal CDFs and thus enables
us to see how the distribution of each variable impacts the joint distribution.
Note that when all the variables are continuous, model (1) corresponds to the
Nonparanormal distribution defined in Liu et al. [2009].

2.1 Joint density

An expression of the multivariate density can be derived from model (1). Below,
we say that a random variable is continuous if its CDF is increasing, and discrete
if its CDF has a countable support.

Proposition 1 Without loss of generality, suppose that the first p variables are
continuous and that the remaining d − p are discrete. Then the multivariate
density of (1) can be written as

f(x1, . . . , xd) =

 p∏
j=1

fj(xj)

×
1∑

jp+1=0

· · ·
1∑

jd=0

(−1)jp+1+···+jdCpΣ(F1(x1), . . . , Fp(xp), up+1,jp+1 , . . . , ud,jd), (2)

where fj denotes the density of Xj, uj,0 = Fj(xj) and uj,1 = Fj(xj−), xj−
denotes the previous point from xj in the ordered support of Fj, and CpΣ denotes
the derivative of the copula with respect to the p continuous marginal CDFs,

3



that is CpΣ(u1, . . . , ud) = ∂pCΣ(u1, . . . , ud)/∂u1 · · · ∂up. If xj is the least point
(if there is one), we set by convention that Fj(xj−) = 0. Also by convention we
set that if p = d then the second factor in the right-hand side of (2) is replaced
by cΣ(F1(x1), . . . , Fp(xp)), where cΣ(u1, . . . , up) = CpΣ(u1, . . . , up) is the density
of CΣ. If p = 0, the first factor in (2) is replaced by 1 and CpΣ(u1, . . . , ud) =
CΣ(u1, . . . , ud).

The formula (2) appears in Song [2007] without proof. A proof of Proposi-
tion 1 is given in Section C.1 of the Supplementary material.

2.2 Dependence properties

Having an expression of the multivariate density in equation (2) enables us to
study the (in)dependence relationships between X1, . . . , Xd.

2.2.1 Multivariate dependence properties

Proposition 2 Let G1, . . . , Gk be a partition of D = {1, . . . d}, and denote
XG = (Xj : j ∈ G) for G ⊂ D. Then, XG1

, . . . , XGk
are mutually independent

if and only if Σ is a block matrix of the form

Σ =


Σ1 0 ... 0
0 Σ2 ... 0
0 0 ... 0
0 0 0 Σk


where each Σi is a block of size |Gi| × |Gi|.

A proof of Proposition 2 can be found in Section C.2 of the Supplementary
material. We see that the correlation matrix of the copula encodes mutual
independencies between groups of variables. Note that the standard Pearson’s
correlation matrix of the observed variables does not satisfy this property.

2.2.2 Bivariate dependence properties

Let X1 and X2 be a pair of variables distributed according to the Gaussian
copula model (1) with

Σ =

(
1 ρ
ρ 1

)
.

In this case the copula is simply denoted by Cρ. Using (1), it is easy to see that
the density cρ of Cρ, that is, cρ(u, v) = ∂2Cρ(u, v)/∂u∂v, 0 < u, v < 1, is given
by

cρ(u, v) =
1√

1− ρ2
exp

(
2ρΦ−1(u)Φ−1(v)− ρ2(Φ−1(u)2 + Φ−1(v)2)

2(1− ρ2)

)
.

By definition, the parameter ρ measures the correlation between the latent
Gaussian variables, but how can it be interpreted for the observed variables?
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By taking d = 2 in Proposition 2 we see that ρ = 0 if and only if X1 and X2

are independent. We shall see that the lower and upper extreme values of ρ
can also be characterized in terms of the observed variables when the discrete
variables follow a Bernoulli distribution. Remember that X1 and X2 are said
to be comonotonic if one of them is almost surely an increasing function of the
other, and countermonotonic if they are almost surely a decreasing function of
each other [Nelsen, 2007].

Proposition 3 Suppose that one of the three cases below holds:

(i) X1 and X2 are continuous;

(ii) X1 ∼ B(p1), 0 < p1 < 1, and X2 continuous;

(iii) X1 ∼ B(p1), X2 ∼ B(p2), 0 < p1 ≤ p2 < 1 and p1 + p2 ≥ 1.

Then

ρ = 1 iff


(X1, X2) is comonotonic case (i);

(X1,1{X2>F
−1
2 (1−p1)}) is comonotonic case (ii) ;

X1 ≤ X2 case (iii).

and

ρ = −1 iff


(X1, X2) is countermonotonic case (i);

(X1,1{X2>F
−1
2 (p1)}) is countermonotonic case (ii) ;

X1 +X2 > 0 case (iii).

A proof of Proposition 3 is given in Section C.3 of the Supplementary ma-
terial. In case (ii) for ρ = 1, the variable X2 exceeds a certain threshold only
if X1 = 1. A similar pattern holds for ρ = −1. In case (iii), ρ = 1 indicates
that X1 is dominated by X2, and ρ = −1 indicates that at least one of the
variables has to be non-null. For example, if X1 and X2 encode the presence of
two mutations, then ρ = 1 indicates that presence of the first mutation implies
presence of the second. A visual representation of Proposition 3 is depicted in
Figures S1 (ρ = 1) and S2 (ρ = −1) of the Supplementary material.

3 Estimation of Σ

Let Xi = (Xi
1, . . . , X

i
d), i = 1, . . . , n, be n i.i.d. observations in Rd drawn from

the distribution defined in model (1). As it is often the case, we suppose that for
all j in {1, . . . , d}, we have no information regarding the marginal distributions
Fj which are replaced by the empirical distributions

F̂j(x) =
1

n

n∑
i=1

1(Xi
j ≤ x)

where 1 denotes the indicator function. Hence, our estimation is performed in
a semi-parametric framework. In a high dimensional setting, computing the full
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multivariate density has a high computational cost. We therefore propose to
estimate the copula correlation matrix Σ by extending the pairwise maximum
likelihood estimator [Mazo et al., 2024] to mixed and non-parametric marginals.
In other words, we compute

Σ̂ = arg max
Σ

1

n

n∑
i=1

∑
j<j′

log f̂jj′(X
i
j , X

i
j′ , ρjj′). (3)

In the expression above, ρjj′ denotes the element of Σ at the jth row and j′th

column and f̂jj′ denotes an estimate of the density of the bivariate marginal
CDF corresponding to (Xj , Xj′) with respect to λ ⊗ λ if both variables are
continuous, µ ⊗ µ if both variables are discrete, and λ ⊗ µ measure if Xj is
continuous and Xj′ is discrete, with λ the Lebesgue measure and µ the counting

measure. Above we said that f̂jj′ is an estimate of fjj′ , the density of (Xj , Xj′).
Indeed, as we shall see below, the density fjj′ depends on the marginal CDFs

Fj and Fj′ . But since we substitute the empirical CDFs F̂j and F̂j′ for Fj and

Fj′ , the resulting function f̂jj′(·, ·; ρjj′) is only an estimate of the true density
fjj′(·, ·; ρjj′).

The formulas of the densities fjj′ in the three cases (Xj and Xj′ continuous,
Xj continuous and Xj′ discrete, Xj and Xj′ discrete) are given next. Rewrite

Cρjj′ (u, v) = CΣ(1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1)

(u and v at the jth and j′th positions, respectively) so that the bivariate CDF of
(Xj , Xj′) is given by Cρjj′ (Fj(xj), Fj′(xj′)). Let cρjj′ (u, v) denote the density of

Cρjj′ (u, v), that is, cρjj′ (u, v) = ∂2Cρjj′ (u, v)/∂u∂v, 0 < u, v < 1, −1 < ρjj′ <
1. Let fj be the marginal density of variable Xj . If Xj and Xj′ are continuous,
then fjj′ can be expressed as

fjj′(xj , xj′) = fj(xj)fj′(xj′)× cρjj′ (Fj(xj), Fj′(xj′)).

If both variables are discrete, then the density takes the following form:

fjj′(xj , xj′) = P(Xj = xj , Xj′ = xj′) = Cρjj′ (Fj(xj), Fj′(xj′))

+ Cρjj′ (Fj(xj−), Fj′(xj′−))

− Cρjj′ (Fj(xj−), Fj′(xj′))

− Cρjj′ (Fj(xj), Fj′(xj′−)).

Finally, if Xj is continuous and Xj′ is discrete, then we get the following form:

fjj′(xj , xj′) = fj(xj)

∫ Fj′ (xj′ )

Fj′ (xj′−)

cρjj′ (Fj(xj), v)dv.

The estimated density f̂jj′ is obtained by substituting F̂j and F̂j′ for Fj and
Fj′ , respectively, in the formulas above.
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4 Simulations

The goal of this simulation study was to illustrate several properties of the pro-
posed copula model and estimation procedure. We first considered the bivariate
case. Then, we extended our estimation to a high-dimensional setting. The sim-
ulations from this section were run with our heterocop R package available on
CRAN.

4.1 Simulation study in the bivariate case

We simulated four variables with a joint cumulative distribution function cor-
responding to a Gaussian copula as in model (1) and with marginals detailed
below:

� a Poisson distribution P(1) of mean and variance 1

� a Negative Binomial distribution, denoted NB(1, 0.5), where 1 is the num-
ber of successful trials and 0.5 is the probability of success

� a centered normal distribution with variance 1 N (0, 1)

� a Bernoulli distribution B(0.5) of mean 0.5

The four variables make 6 pairs, studied separately. Let ρ denote the copula
parameter of the pair considered and ρ̂ its estimate obtained from (3). The
Mean Squared Error (MSE) of ρ̂ is defined as: MSE(ρ̂) = E[(ρ̂−ρ)2]. The MSE
can be decomposed into the sum of the variance and the squared bias of ρ̂ as
follows:

MSE(ρ̂) = E[(ρ̂− ρ)2] = E[ρ̂2]− E[ρ̂]2︸ ︷︷ ︸
V ar(ρ̂)

+ (E[ρ̂− ρ])2︸ ︷︷ ︸
Bias(ρ̂)2

For each of the 6 pairs, the MSE, variance and squared bias of our estimator
were empirically estimated by running N = 500 simulations for different sample
sizes n = 20, 50, 100, 500, 1000 and copula coefficients ρ = 0.3, 0.6, 0.8. The
results are depicted in Figure 1.
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Figure 1: Averaged MSE with 95% confidence intervals of ρ̂ for the various
values of ρ and sample sizes, and each of the 6 pairs of the 4 distributions.

Figures S3 and S4 of the Supplementary material represent the evolution
of the variance and of the squared bias depending on the sample size. One
can see that the variance of the estimators decreases to zero as the sample
size increases. It is also interesting to note that it is higher for lower values
of the correlation coefficient (ρ = 0.3) than for the higher ones (ρ = 0.8). The
variances do not seem to be impacted by the types of the variables, and a similar
pattern is observed for all the distributions considered here. It can be noticed
that the squared biases are all very close to zero. Although slightly higher in
the discrete/discrete case for n = 20, they remain extremely low and do not
significantly differ from zero as soon as the sample size exceeds 50.

We compared our semi-parametric approach with a fully parametric one in
which the parametric families of the marginal distributions are known. We
considered the case of the Normal and Negative Binomial distributions, with
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parameters specified above. The copula correlation coefficient was now esti-
mated in a fully parametric way, i.e. the parameters of the marginals were
estimated by maximum likelihood in a first step (each marginal separately) and
the copula parameter was estimated in a second step from the likelihood with
the estimated parametric marginals plugged in. Figure S5 in the Supplementary
material presents the variances and squared biases of both the parametric and
semi-parametric estimates, for N = 500 simulations. The variances were found
to be slightly higher for our semi-parametric estimator for low sample sizes of 20
and 50, but quite similar otherwise. Both the parametric and semiparametric
estimators have a negligible bias, compared to the variance.

In real data analyses, the parametric families of the marginal distributions
is rarely known. We therefore assessed the robustness of our semi-parametric
method against miss-specification of the marginal distributions. We simulated
the data as previously but estimated the marginal parameters assuming a Pois-
son distribution instead of a Negative Binomial one, a common situation in ge-
nomics. Figure S6 of the Supplementary material shows that the estimates of ρ
obtained by the fully parametric approach are biased while our semi-parametric
method remains robust. Our proposed approach will therefore be useful for
practical applications when the parametric distribution of the data cannot be
specified.

Finally, we assessed the ability of the copula correlation coefficient to cap-
ture complex dependence relationships. Let X1 ∼ N (0, 3) and X2 = 1{X1≥t},
where t ∈ R is some fixed threshold. It is shown in Section D of the supplemen-
tary material that the random vector (X1, X2) belongs to model (1) with copula
correlation ρ = 1. As shown in Figure 2, the higher the threshold, the less the
Pearson, Spearman or Kendall coefficients are able to capture the dependence
relationship. (Exact numerical values of Pearson’s ρP and Spearman’s ρS are
0.79, 0.62, 0.27, 0.06, and 0.87, 0.57, 0.18, 0.03, respectively; see Section D of
the supplementary material for the calculations.) The proposed copula correla-
tion estimation seems therefore more robust when binary variables have to be
analyzed, especially in the case of rare events as observed in mutation data for
example, as presented in the next section.
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Figure 2: Boxplot of 50 estimates, each based on a sample of size 100, of
each type of coefficient (Pearson, Spearman, Kendall, Copula) and for different
thresholds t.

4.2 Simulation study in the high-dimensional case

4.2.1 Simulation protocol

Five different sample sizes were considered n = 20, 50, 100, 500, 1000, for d = 30
and d = 300 variables. In each case, one third of the variables were distributed
according to a N (0, 1), one third were NB(1, 1

2 ) and the last ones were B( 1
2 ).

Two structures were considered for the copula correlation matrix. The first is
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a block-diagonal structure as specified below:

Σblocks =



0.8
7×7

0 0 0 0

0 0.6
10×10

0 0 0

0 0 0.5
2×2

0 0

0 0 0 0.7
6×6

0

0 0 0 0 0.3
5×5


In this matrix, the order of the variables was randomly defined to have blocks
of correlated variables of different types. For d = 300 variables, the size of
each block was multiplied by 10. The second structure is a sparse structure. A
matrix Σ is generated through a modified Cholesky decomposition as described
in Algorithm 1.

Algorithm 1 Simulation of a positive definite sparse matrix Σ

Require: γ ∈ [0, 1], m > 0
Define a m×m matrix of zeroes Σ
Simulate m(m−1)

2 uniform U(0.3, 1) coefficients
Randomly set a proportion γ of coefficients to 0
Fill the upper triangular part of Σ with the coefficients
Σ← ΣTΣ

Σij ←
Σij√

Σii
√

Σjj
return Σ

By varying γ in Algorithm 1, we can generate matrices with different pro-
portions of zeroes. We let γF denote the obtained proportion of zeroes of the
final matrix Σ. We call γF the sparsity coefficient. Regarding the sparsity of the
correlation matrix, we have considered a final proportion γF of null coefficients
of around 20%, 50% and 80%, by empirically setting the γ parameter at 0.61,
0.79 and 0.91. The simulated matrices were denoted Σ0.2,Σ0.5, and Σ0.8. For
each correlation matrix, simulations were run N = 500 times.

4.2.2 Numerical results

Results are first presented for d = 30 variables. The estimation accuracy was
evaluated using the normalized Root Mean Squared Error (RMSE) and the
normalized Mean Absolute Error (MAE) calculated as follows for a d×d matrix
Σ:

RMSE(Σ̂) =
1

N

N∑
k=1

√
1

d(d− 1)

∑
1≤i 6=j≤d

(Σ̂kij − Σij)2
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MAE(Σ̂) =
1

N

N∑
k=1

1

d(d− 1)

∑
1≤i 6=j≤d

|Σ̂kij − Σij |

where Σ̂k corresponds to the kth estimation of Σ. Note that the same Σ was kept
for the N = 500 simulations. As shown in Table S1a from the Supplementary
material, the normalized RMSE decreases as the sample size increases. It does
not exceed 20% for samples larger than n = 50 and remains below 5% for sample
sizes greater than n = 500. It seems to be robust to the specification of the
correlation structure and the amount of sparsity in the matrix. Similarly to
the normalized RMSE, the normalized MAE values given in Table S1b from the
Supplementary material decrease when the sample size increases, and remain
below 5% for sample sizes larger than n = 500. The normalized MAE also seems
robust to the structure of the correlation matrix and its sparsity.

The same metrics were also evaluated in a higher-dimensional setting, for
d = 300 variables. In order to reduce computational time, we chose to study
only a matrix of sparsity close to 0.8 and four different sample sizes n =
20, 50, 100, 500. Table S2 from the Supplementary material shows the obtained
normalized RMSE and MAE also averaged over N = 500 repetitions. The pro-
posed estimation procedure was found to be robust to an increase of the number
of variables. Normalized RMSE and MAE values were indeed close to the val-
ues previously obtained with 30 variables, even for a small sample size. This
result is promising for applying the proposed method to the analysis of real-life
examples.

In the perspective of applying the proposed procedure to construct biological
networks, we evaluate its ability to discriminate between small and large values
of the copula correlation coefficient. Given a fixed threshold t ∈ [0, 1], a copula
correlation coefficient estimate ρ̂ is classified as belonging to the first group if
ρ̂ < t, and as belonging to the second otherwise. By an abuse of language, we
call the estimates classified into the first group the predicted zeroes, and those
classified into the second group the predicted non-zeroes. Threshold t was here
arbitrarily set to 0.3.

The sensitivity to the identification of the non-zeroes, also known as true
positive rate, and its specificity in the detection, also known as the true nega-
tive rate, were measured. Let TP and FN denote the detected non-zeroes and
detected zeroes, respectively, among the real non-zeroes. Similarly, let TN and
FP denote the detected zeroes and detected non-zeroes among the real zeroes.
The true positive rate (TPR) is equal to the proportion of detected non-zeroes
among the real non-zeroes, that is, TPR=TP/(TP+FN). The true negative rate
(TNR) is equal to the proportion of detected zeroes among the true zeroes, that
is, TNR=TN/(TN+FP). The false negative rate (FNR) is defined as the propor-
tion of detected non-zeroes among the real zeroes, that is, FNR=1-TNR. The
false positive rate (FPR) is the proportion of detected zeroes among the real
non-zeroes, that is, FPR = 1-TPR. A contingency table is available in Table S3
of the Supplementary material for visual aid.

The Receiver Operating Characteristic (ROC) is a measure of global perfor-
mance of a given classification rule, or classifier. It is a plot of the TPR against
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the FPR for each value of t. For instance, when t = 0, all the estimated coef-
ficients are classified as non-zeroes and hence TPR=1, FNR=1. When t = 1,
all the estimated coefficients are classified as zeroes and TPR=0, FNR=0. The
AUC, Area Under Curve criterion enables us to quantify the performance of the
classifier by evaluating the area under the ROC curve. The closer it is to 1, the
better the performance.

The ROC curves are presented in Figure 3 for the four correlation structures
considered for d = 30 variables and each sample size, after averaging over N =
500 simulations. Figure 3 also shows the results for d = 300 variables for a
matrix of 0.8 sparsity and Table S4 from the Supplementary material sums up
the AUC values in each case. As expected, the AUC values increase with the
sample size. They are already good for a low sample size of 20, close to 0.8 even
for d = 300 variables, increase to around 0.9 for a sample size of 50, and close
to 1 even for a sample size of 100. It can also be noticed that the accuracy is
improved for a sparser correlation structure, which is often the case of interest
in the context of biological network inference.
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Figure 3: Average ROC curves for N = 500 simulations for the classification
of the estimates of the copula correlation coefficients for different sample sizes.
Four different sparse matrices were considered for d = 30 variables (block-wise
and sparse matrices with sparsity γF = 0.2, 0.5, 0.8). A matrix with sparsity
γF = 0.8 was considered for d = 300 variables.

5 Application on real data

We applied the proposed methodology to a data set from the International
Cancer Genome Consortium (ICGC, see Zhang et al. [2019]) regarding Breast
Cancer in the United States with 990 donors. On each individual, several sam-
ples were collected on both healthy and tumoral tissue. Our variables of interest
here are RNA-seq counts, protein abundance, and mutations. We kept for fur-
ther analysis only the samples collected on tumoral tissue, and averaged the
normalized protein expression and the RNA-seq counts per individual. The bi-
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nary encoding was kept for the presence of the mutations for each individual.
The initially selected variables prior to pre-processing contained:

� RNA-seq counts for 20 501 genes observed on 939 individuals

� normalized protein abundance for 115 genes observed on 260 individuals

� presence of 107 249 mutations observed on 918 individuals

5.1 Data pre-processing

First, the RNA-seq counts were normalized via the DESeq2 R package [Love
et al., 2014], which enables to study gene differential expression, and rounded
to the next integer. The number of donors was reduced to 250 after intersecting
the available data for all types of variables. In order to reduce the dimension
while allowing a biological interpretation of the results, we restricted the analysis
to the 108 genes found in common between the RNA-seq and protein data.
Concerning the mutation data, we kept those present in at least two donors,
reducing their number to 62. The genes associated to each mutation were then
identified via the ensembldb R package [Rainer et al., 2019]. As there were only
4 common genes involving the mutations, RNA-seq and protein data, we decided
to keep all 62 mutations. Our final dataset therefore contained 250 individuals
and 278 variables: 108 discrete RNA-seq counts, 108 continuous protein data
and 62 binary mutations. Note that for the mutations, the proportion of ones
has gone from 0.001 to 0.013 after data pre-processing.

Finally, the copula correlation coefficients of model (1) were estimated by (3)
from the final dataset. For comparison, we also estimated the Spearman’s ρS

and Kendall’s τ coefficients.

5.2 Results

5.2.1 Comparison of the copula correlation coefficient with Spear-
man’s ρS and Kendall’s τ

Figure S7 from the Supplementary material shows an histogram of the estimates
of the coefficients of Spearman’s ρS , Kendall’s τ , and the proposed copula. We
can see that the copula correlation coefficient seems to span the entire range of
possible values from -1 to 1, while Spearman’s ρS and Kendall’s τ seem to take
smaller absolute values.

To understand the difference between Spearman’s ρS , Kendall’s τ , and the
copula correlation coefficient, we compare the estimates by type. Remember
that there are three variable types: discrete RNA-seq counts (D), continuous
protein abundance (C) and binary mutations (B), and hence 6 possible com-
binations of types for each pair: DD, DC, DB, CC, CB, BB. RNA-seq data,
although discrete, have a large number of distinct values, which makes them
nearly continuous. Hence we grouped the DD, DC and CC coefficient estimates,
leaving three combinations CC (which also contains DD and DC), CB and BB.
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A scatterplot is displayed for each of these combinations in Figure 4. Panel A
of Figure 4 confirms that the differences between Spearman’s ρS or Kendall’s
τ and the copula does not come from the combinations of types DD, DC and
CC. We see that the differences are explained by the combinations involving the
binary variables. The narrow range of Spearman’s ρS is explained by the fact
that this coefficient applied to two Bernoulli variables with parameters p1 and
p2 is bounded by 3p1(1− p2) in absolute value [Mesfioui et al., 2022].

5.2.2 Dependence relationships between the binary variables

Let Xj denote the presence of the jth mutation in some individual (Xj = 1
when the mutation is present and 0 otherwise) and let pj = P(Xj = 1) denote
the Bernoulli parameter of Xj (j = 1, . . . , 62). In the data all pj are less than
0.15. Thus the conditions of case (iii) of Proposition 3 are satisfied by every pair
of binary variables (1−Xj′ , 1−Xj). Indeed 1−pj + 1−pj′ ≥ 2−0.3 = 1.7 > 1.
Thus when the copula correlation coefficient is close to minus one, case (iii) of
Proposition 3 predicts that 1 − Xj + 1 − Xj′ > 0 and hence Xj + Xj′ ≤ 1,
that is, no two mutations can co-occur. Case (iii) of Proposition 3 also predicts
that when the copula correlation coefficient is close to one then 1− pj < 1− pj′
implies 1 − Xj ≤ 1 − Xj′ and hence Xj ≥ Xj′ , that is, the rarest mutation
cannot occur without the more common one. A look at the data confirms these
predictions, see Table S5 in the Supplementary material for an illustration.

5.2.3 Network analysis

From a set of estimates of copula correlation coefficients we can build a network
by linking highly dependent variables. More precisely, the network is a graph
in which the nodes represent the variables and the edges the copula correlation
coefficient estimates. One draws an edge between two variables if the absolute
value of their copula parameter is greater than some chosen threshold.

One can do the same with the estimates of the Spearman’s ρS or Kendall’s
τ coefficients, and comparison of the inferred networks by the three methods
was investigated. The number of detected edges as a function of the threshold,
separately for each combination of data types (CC, CD, CB, DD, DB, BB) is
depicted in Figure 5. As illustrated in Figure 5, for CC, CD and DD, the copula,
Spearman, and Kendall methods behave similarly and identify a similar number
of links. When the binary mutation data are involved, however, the copula
model detects more links than the Spearman or Kendall approach. This agrees
with the previous remark that Spearman’s ρS between two binary variables in
general cannot reach the endpoints of the interval [−1, 1].

Figure 6 presents the inferred networks obtained from model (1), for different
threshold values. It can be noted that the strongest links are those among
mutations, all at the center of the network. Around the mutations lie the genes
(RNA-seq) and the proteins, tied to each other and to the mutations. We see
that intra-type links (RNA-seq with RNA-seq, and proteins with proteins) tend
to be strongest than inter-type links (RNA-seq with proteins), although this
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(a) copula versus Spearman (b) copula versus Kendall

Figure 4: Copula correlation coefficient versus Spearman or Kendall coeffi-
cient for each combination of variable types: continuous/continuous (A), bi-
nary/continuous (B) and binary/binary (C). The RNA-seq data have been
grouped with the continuous data.
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Figure 5: Number of detected links by the copula, Spearman, and Kendall
coefficients, for threshold values ranging from 0 to 0.9, by combination of types
where D stands for discrete (RNA-seq count data), C for continuous (protein
data), B for binary (mutation data). In the panel BB the Spearman and Kendall
curves coincide.
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feature wanes as the threshold gets higher. By contrast, the networks based
on Spearman ρS or Kendall’s τ , depicted in supplementary Figure S8, show
mutations as peripheral nodes.

To check that the inferred links have biological meaning, we arbitrarily se-
lected copula correlations above 0.7 and examined the nodes that had a degree
(number of connections) greater than 10. These four variables correspond to mu-
tations MU4777833, MU5153080, MU17289, and MU5551967. The associated
genes as identified by ensembldb are shown in Table S6 in the Supplementary
Material. We performed a literature search for each of these genes, and they
were all found to be involved in cancer development. Indeed, gene ARHGEF11
has been identified as playing a key role in the migration and growth of inva-
sive breast cancer cells [Itoh et al., 2017]. Gene SLC7A9 belongs to the SLC7
family which is known for its role in cancer cell metabolism [Yan et al., 2022].
Similarly, gene CDKN1B affects protein p27 which is linked to the production
of breast cancer cells [Cusan et al., 2018] and finally, PQBP1 is usually overex-
pressed in breast cancer patients [Liu et al., 2024]. The identified hubs of the
copula network therefore seem to highlight interesting mutations, that were not
identified with the Spearman or Kendall approach.

6 Discussion

The joint analysis of heterogeneous data is a key methodological topic, espe-
cially in the context of multi-omic analyses. We proposed here an innovative
approach based on the Gaussian copula that allows to build correlation networks
from various types of data (continuous and discrete). The proposed estimation
method is based on a semi-parametric pairwise likelihood for mixed-type data,
with no explicit assumption concerning the distribution of the marginals, which
makes it very flexible for biological data analysis. The estimation procedure is
implemented in a freely available R package called heterocop.

We theoretically derived properties of the copula correlation coefficients to
make the link with the dependence relationships in the observed data. In par-
ticular, we showed that a block-wise structure in the copula correlation matrix
is equivalent to block-wise mutual independence in the observed data. We char-
acterized the lower and upper extreme values of the copula parameter in terms
of the observed data when a Bernoulli distribution is involved, thus providing
an interpretation of the copula parameters.

In an extensive simulation study, we showed that under various experimen-
tal designs the Gaussian copula correlation matrix was estimated with a good
accuracy with only dozens of observations even for a large number of variables
(several hundreds). We also showed that it provided more accurate results than
Kendall or Spearman coefficients, especially for the analysis of binary data. This
result was also observed in the real data analysis regarding a breast cancer study
including binary mutation data.

Regarding the block-wise mutual independence property, it would be inter-
esting in a further work to propose a sound statistical procedure to identify
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Figure 6: Copula correlation coefficient network for different threshold values.
The nodes (variables) are colored by biological type (RNA-seq, protein, muta-
tion). An edge is drawn between two nodes if the absolute value of the corre-
sponding estimated correlation coefficient is above the threshold.
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independent blocks in the data. Theoretical consistency and asymptotic nor-
mality of the estimator could also be studied in a future work. This would open
the gate to statistical testing and model selection.

Our focus was here on the correlation matrix estimation. In order to obtain
the direct links in the networks, the next step would be to propose an estimation
procedure for the precision matrix, using the computational efficiency of the
pairwise likelihood approach, with a Lasso penalty to obtain a sparse network.

Supplementary material

� A PDF file containing supplementary figures and tables, the proofs of the
propositions, and details of some mathematical calculations.

� An R script to reproduce the figures of the real data analysis.

� The dataset after preprocessing (.csv).
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