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Abstract

Background: Inferring partial correlation networks is essential in systems
biology to uncover direct interactions between biological entities. Traditional
Gaussian graphical models rely on the assumption of normally distributed data,
which limits their applicability to multi-omics datasets comprising heterogeneous
data types such as continuous and discrete variables.

Results: We propose a novel likelihood-based approach for network inference
using a Gaussian copula model with semiparametric pairwise-likelihood estima-
tion of the correlation matrix. The inferred correlation structure is then inverted
and regularized via the graphical lasso to recover partial correlations. Compared
to a moment-based approach employing bridge functions, our method demon-
strates significantly improved computational efficiency and estimation accuracy,
particularly for discrete data with many categories and/or large values, such as
count data. This result is important for biological applications, especially for the
integration of RNA-seq count data. An application to a breast cancer data set
from the International Cancer Genome Consortium (ICGC) successfully identified
biologically relevant interactions.

Conclusions: The proposed approach, based on the Gaussian copula and
likelihood-based estimation, provides a novel, effective and computationally effi-
cient mathematical framework for integrative multi-omics data analysis and
network inference.

Keywords: Partial correlation networks, multi-omics data, Gaussian copula,
Graphical lasso



1 Introduction

Systems biology is based on the analysis of complex, large-scale data of diverse nature.
A key biological challenge is to understand the interactions and regulatory links
between the different types of omics data. Their heterogeneity constitutes a major
analysis issue. Some can easily be modeled with Gaussian distributions (transcrip-
tomic data from microarrays), others are continuous but non-Gaussian (epigenomic
data from methylation chips), or discrete (transcriptomic and epigenomic data from
sequencing, genotyping). However, mathematical and statistical models are highly
dependent on the nature of the data, which is why the models proposed to date have
mainly been carried out independently for each omics level.

When the data are Gaussian, the networks are assimilated to a set of conditional
independence relationships between variables. These relationships are encoded in the
inverse of the covariance matrix, called the precision matrix, of the underlying Gaus-
sian distribution. In this case, inference is made by penalized maximum likelihood. A
commonly used algorithm for that purpose is called glasso [1]. When the data are con-
tinuous, but not necessarily Gaussian, a non-linear scaling of the data allows to recover
Gaussian data [2]. This approach has been used, for example, to analyze microarray
data. When the data are discrete, like the counts generated by RNA-seq technology,
there is no one-to-one transformation to recover Gaussian data. An alternative is to
build a hierarchical model, such as Poisson models based on latent Gaussian vari-
ables [3]. The network is reconstructed from the precision matrix of latent variables.
This approach has the advantage of not requiring any transformation, but is limited
to the analysis of one type of data with strong parametric assumptions regarding the
observed distribution.

In the context of multi-omics network inference, it is necessary to be able to study
the relationships between data of various types (Gaussian, continuous non-Gaussian,
counts, etc.) Two main approaches have been proposed to tackle this issue [4]. The
first one corresponds to Mixed Graphical Models, which are an extension of Gaussian
graphical models allowing to take into account links between discrete and continuous
variables by regressing each variable with respect to the others. It corresponds to an
extension of the graphical lasso, with one or more regularization parameters [5, 6].
However, they require strong parametric assumptions on the marginal distributions.
The second one corresponds to Gaussian copula-based graphical models that are par-
ticularly well-suited for the integration of data with various types and can be extended
to the semi-parametric case where only the copula parameter is to be estimated, with
no assumptions regarding the marginals. Parameter inference for these models has
so far been mostly performed in a Bayesian framework by MCMC approaches [7, 8],
which have a high computational cost. Some methods also rely on bridge functions
that link an extension of Kendall’s tau (estimated on the observed variables) to the
copula correlation coefficient [9].

The goal of this article is to propose a parameter inference algorithm based on
the pairwise likelihood. We estimate the copula parameters directly from the observed
data before applying the graphical Lasso in order to invert and regularize the inferred
correlation matrix. The proposed algorithm is evaluated in an extensive simulation
study in which we compare our performance to bridge function methods, and then



applied to real biological data from the International Cancer Genome Consortium
[10]. The method is implemented in an R package called heterocop, available on the
CRAN.

2 Methods

2.1 Gaussian copula model

Let X = (X{,...,X}),i=1,...,n, be a sample of i.i.d. observations in R%, and let
F denote the cumulative distribution function (CDF) of X?. We assume

F(z1,...,zq) = Cs(Fi(z1),. .., Fa(zq)) (1)
= Ox (@ N (Fi(71)), .., D (Fu(2a)))

where Fi, ..., Fy denote the marginal CDFs of X7{,... X! ®x the centered Gaussian
multivariate CDF of correlation matrix ¥, and ®~! the inverse standard Normal CDF.

In other words, model (1) corresponds to a latent Gaussian variable structure.
Let Z' = (Z},....,Z}) ~ N(0,%) denote a centered standardized Gaussian vector
of correlation matrix X. Let Ff denote the generalized inverse function such that
Ff(u) = inf{x : Fj(x) > u}. If X] = F;~(®(Z})), then it can be shown that X’ has
the CDF given by (1).

We are interested in the estimation of the partial covariances between the latent
Gaussian variables Z°,

Cov(Z}, Zi| 2" ; n) = E(ZLZ0|Z2 1) — E(ZHZE i) E(Z3) 20 5)s (2)

where Zi(j j»y denotes the set of variables Zi,..., Z} without Z} and Z;,. Note that
for a given pair of variables Z; ¢ and Zi,7 this value is deterministic because it does not

depend on the values taken by Zt (3 [11]. It can be shown that
S Cov(Z}, Z4| 2" )
Cor(Z}, 20| 2% ;1) = EEW:
\/Var 221 ;o WVar(ZUlZE ;)
—$

where ;. denotes the element at the j-th row and j’-th column of the precision
matrix Q = X1,
2.2 Pairwise-likelihood and Graphical Lasso

The first step is to obtain an estimation of matrix X. We propose to use the pairwise
pseudo maximum likelihood estimator (PPMLE) studied by Mazo et al. [12], extended



to the case of non-parametric marginals [13]:

3 = argmax | — Z Z log f” X X7 i’ (3)
z =1 5<j’
where fjj/ (-, 255) = fijr oo Fy, Fjr 855)  denotes an  estimate  of

fijr G- Fj, Fyr,2550), the density of the bivariate marginal CDF from model (1) cor-
responding to the pair (X;, X;/) with respect to the A ® A measure if both variables
are continuous, ¢ ® p measure if both variables are discrete, and A ® p measure if X
is continuous and X is discrete. A denotes the Lebesgue measure and p denotes the
counting measure. Note that the marginal CDFs F; and F}, have been replaced by
their empirical counterparts F'j and Fj/. The expressions of the densities fjj/ can be
found in Appendix B.2. This approach does not require any parametric assumption
on the marginals, and handles the cost of dimensionality by a pairwise approach. It
also has the advantage of estimating 3 from the observed data in a single step.

In order to obtain the partial correlations, once an estimator Y of ¥ is obtained,
it can be inverted via a penalized approach such as graphical Lasso (gLasso) [1] as
shown in equation (4).

0, = argmin (tr(Epp) — log(1920) + Al ) (4)

where 3 pp denotes the projection of 3 on the space of positive definite matrices. Note
that the expression from equation (4) stems from maximum likelihood inference of
in the latent space as described in Appendix C.

2.3 Comparison with a moment-based method

Another possible approach to estimate ¥ is the use of bridge functions [9, 14, 15],
which are based on a one-to-one correspondence between a statistic of the observed
data, which we denote by r, and the matrix . Note that this method does not require
either any parametric assumption on the marginal distributions.

The first step consists in the estimation of 7, which is a vector with as many
components r;;s as there are pairs of variables (X;, X;/). For each pair, the estimator
745 of r;;; depends on the nature of the variables. When both variables X; and X
are continuous, it actually coincides with Kendall’s 7 and is computed as

2

Fijr = Py Z sign(X; — X; )51gn(X Xz ) (5)

1<i<i’<n
When X is continuous and X is discrete, it is computed as

2 . 3 i i i’
"= o) Z sign(X! — X1 )(X — X0)) (6)
1<i<i’<n



Finally, when the pair is discrete, it is computed as

A 2 i i’ i i’
P = ) Z (X=X (XL — X1, (7)
1<i<i’<n

In a second step, estimation of ¥ is performed by solving F(f]jj/) = 7 for f]jj/,
where F' here momentarily denotes the so-called bridge function that makes the one-to-
one correspondence. The expressions of the bridge functions for a continuous, discrete,
mixed pair, denoted by F¢¢, Fdd Fde respectively, can be found in Appendix B.1.

However, several obstacles can arise. Indeed, the equation F (f]jj,) = ;;» may not
have any solution in the interval [—1,1], in which case a manual correction may be
needed. Moreover, the computation time of the bridge function increases with the

number of categories of the discrete variables.

3 Simulation study

The goal of this simulation study is to compare the performance of our proposed
pairwise pseudo likelihood-based method and the moment-based approach with bridge
functions.

3.1 Simulation protocol

First, we simulate a partial correlation structure Q. We set a d x d matrix of zeroes and
we choose a number r of non-null coefficients. Then, we randomly position 7/2 non-
null coefficients via a Watts-Storgatz approach [16] in the upper triangular part of the
matrix. We fill them with uniform values 1(0.2,0.7) and we symmetrize our matrix
before setting its diagonal to 1. Finally, we make it nonnegative definite by adding
the absolute value of its smallest eigenvalue to its diagonal. We compute ¥ = Q!
and standardize it to be a correlation matrix ¥ as required in model (1). The detailed
algorithm is presented in Appendix A. Once generated, the matrices ¥ and ) = £ !
are kept fixed throughout the whole simulation study.

We simulated a Gaussian vector (Z1,...,2Z4) ~ N(0,X) of correlation matrix
3. Then, we considered two simulation protocols in order to obtain our data set
(X1,...,X4). The first one is similar to the setting presented by [9]. We simulated
a data set that contains one half of Gaussian variables and another half of discrete
variables with at most three categories. To do so, we simulated d/2 uniform cutoff
values Cj; ~ 1£(0.25,0.85) and d/2 uniform cutoff values Cjo ~ U(1.5,2). We set
X; =2 for j =1,...,d/2, and then we set X; = 1(Z; > Cj1) + L(Z; > Cj2) for
j=d/2+1...,d.

We then consider a more realistic second simulation protocol to complexify the
structure of the dataset, in which one third of the variables are Gaussian A(0,1000),
one third are discrete following a Negative Binomial distribution N B(1000,0.3) and
one third are binary B(3). For j = 1,...,d, we set X; = F=(®(Z;)), where F}~
corresponds to the generalized inverse of the corresponding marginal distribution.

In our simulation study, we have computed N = 100 replications, for d € {30,300}
variables, for sample sizes n € {20, 50,200,500}. On each generated dataset, ¥ was



estimated according to the two inference methods from section 2. Then, a family of esti-
mates {2 was calculated as in equation (4) for a grid of A € log{1.01,1.02...,2.99, 3}
for d =30, and A € {0.05,0.06...,0.74,0.75} for d = 300.

3.2 Performance Metrics

Three different performance metrics were computed in order to compare the two meth-
ods. First, the computational efficiency was evaluated by recording the CPU time
for the computation of ¥ and its inversion for one value of A. Note that for the
bridge functions estimation method (subsection 2.3), the original code can be found
on https://github.com/Aiying0512/LGCM and corresponds to the article by Zhang
et al [9]. We have parallelized it in order to have a fair comparison of computation
time with the code for the PPMLE estimation method that is implemented in the
heterocop R package [17], with 19 cores used by default.

Our main goal is to construct a biological network, in which an edge between
two nodes corresponds to a non-null latent conditional correlation between the cor-
responding variables. A key step therefore consists in recovering the set of non-null
conditional correlations between the latent variables. The simulated precision matrix
Q has a sparsity (proportion of zeroes) of about 0.8 for d = 30, corresponding to 75
non-zeroes to be identified, and around 0.98 for d = 300, corresponding to 750 non-
zeroes. A zero corresponds to no conditional correlation, while a non-zero corresponds
to a non-null conditional correlation. For each estimation {2y, the penalization enables
to set the estimated coefficients exactly to zero without a thresholding step. Note
that the proportion of estimated zeroes increases along with the penalization param-
eter \. For each A\, two main indicators were measured. The sensitivity, also known as
true positive rate TPR(A), represents the proportion of correctly detected non-zeroes
in 2, among the true non-zeroes in €. Similarly, the specificity, also known as the
true negative rate TNR(A), corresponds to the proportion of correctly detected zeroes
among the true zeroes. More specifically, we are going to consider the false positive
rate, FPR(A\) = 1 —TNR(A). The Receiver Operating Characteristic (ROC) curve is
a graphical representation of the FFPR against the TPR depending on the parameter
A. When A is high, Q) is strongly penalized and all non-diagonal coefficients are zero,
leading to TPR(A\) = 0 and FPR(\) = 0. When X is low, Q, is not penalized and
there might be no zero coefficients, leading to TPR(A) = 1 and FPR(\) = 1. The
Area Under Curve (AUC) criterion computes the area under the ROC curve in order
to evaluate the performance of the classifier.

Finally, to assess the performance of the estimator 3, we shall examine the dis-

tribution of the squared distances between the replicated estimates f)’ﬂ k=1,...,N
and the true X, given by:
S
Z(Ejj’ - Ejj')2~ (8)
J<j’

3.3 Simulation results

First, the results are presented for d = 30 variables, for both simulation protocols, for
N=100 replications.



3.3.1 Comparison of computation times

Figure 1 shows that for the first simulation protocol, when the discrete variable only
has three categories {0, 1,2}, the bridge function performs similarly until n = 200,
and slightly better for larger sample sizes n, needing under 10 seconds per iteration
when n = 500 while the PPMLE estimation needs about 30 seconds for this sample
size. A much larger difference is observed in the second simulation protocol. Indeed,
this simulation setting leads to a discrete variable that can take several dozens of
discrete values between 2000 and 2500. In this case, the computational time of the
bridge function method drastically increases from around two minutes for n = 50 to
over ten minutes when n = 200, and close to an hour per iteration for n = 500, while
the PPMLE estimation remains, on average, under two minutes for all sample sizes.
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Fig. 1: Computation time for d = 30 variables, for both methods, for the first simu-
lation protocol (top) and for the second simulation protocol (bottom).



3.3.2 AUC values

The presence of conditional correlations has been detected via ROC curves, which
AUC values for both simulation protocols and for both methods are given in Table
1. We can see that in the case of the first simulation protocol, the results are quite
similar, even if the PPMLE estimation seems to perform slightly better for n = 20
and n = 50. Larger differences are observed for the second scenario, especially when
discrete variables are involved, as presented in Table 2. An explanation might be that
bridge functions are not well suited for the analysis of categorical data when the
number and values of the categories can be large, which is typically the case for count
data, especially for RNA-seq data which are often assumed to come from negative
binomial distributions.

Sample size 20 50 200 500
Scenario 1 | PPMLE 0.66 | 0.70 | 0.76 | 0.78
Bridge 0.62 | 0.67 | 0.75 | 0.77
Scenario 2 | PPMLE 0.67 | 0.71 | 0.77 | 0.78
Bridge 0.63 | 0.66 | 0.72 | 0.76

Table 1: Estimated AUC for d = 30 variables,
for each method, sample size and scenario. The
standard errors of the estimates were calculated
and were found to be less than 1072.

AUC on discrete pairs | AUC on CD pairs
Sample size | PPMLE Bridge PPMLE | Bridge
20 0.65 0.60 0.84 0.73
50 0.70 0.60 0.91 0.76
200 0.77 0.64 0.93 0.83
500 0.80 0.69 0.93 0.92

Table 2: Estimated AUC for d = 30 variables, over
the discrete-discrete and continuous-discrete (CD)
pairs, in the second simulation scenario, for each
method and sample size. The standard errors of the
estimates were calculated and were found to be less
than 1072

3.3.3 Squared Error

The overall Squared Error (SE) values, computed as in equation (8) for both simula-
tion scenarios, are given in Figure 2. In the first simulation scenario, both methods
perform similarly, except for a sample size of 20 for which the bridge functions are
slightly better. On the other hand, for the second simulation scenario, for which the
discrete data have larger values and number of categories, much better performances



are observed for the proposed PPMLE approach, as shown in Figure 2. This difference
is even more drastic in the presence of discrete variables, either for discrete-discrete
pairs or continuous-discrete pairs, as presented in Figure 3.
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Fig. 2: Boxplot of the N = 100 SE values for d = 30 for scenarios 1 (top) and 2

(bottom).
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Fig. 3: Boxplot of the N = 100 SE values for d = 30 for continuous-discrete (top)
and discrete-discrete (bottom) pairs in the second simulation scenario.

3.3.4 Simulation results for d = 300

Simulations were run for a larger number of variables (d = 300). Figure 4 shows the
average computation time for both simulation scenarios and both estimation meth-
ods. For the first simulation scenario where the discrete variables only take values in
{0, 1,2}, the computation time is lower for the bridge function estimator for all sam-
ple sizes. Both remain under five minutes for n = 20, 50, 200. In the second simulation
scenario, on the other hand, in which the discrete variables have a much larger num-
ber of categories, the computational time required for the bridge function approach
is much larger than for the PPMLE approach, which prevents to run this method for
sample sizes larger than 50 in this simulation study.
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The estimated AUC values and the distributions of the SE values are presented
in Table 3 and Figure 5. Both methods present similar results for the first simulation
scenario. For the second scenario, the bridge function approach could not be evaluated
for sample sizes larger than n = 50, due to the required computing time, which limits
the interpretation of the results. Our approach performs well in terms of AUC values
and SE even for d = 300 variables for the different sample sizes evaluated, up to
n = 500. The computational time required for the bridge functions for the analysis of
such data is, however, a great difficulty as it prohibits its use for real data analysis,
such as RNA-seq data, as presented in the section below.
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Fig. 4: Computation time for d = 300 variables, for both methods, for the first
simulation protocol (top) and for the second simulation protocol (bottom).
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Sample size 20 50 200 500
Scenario 1 | PPMLE 0.63 | 0.71 | 0.84 | 0.90

Bridge 0.62 | 0.70 | 0.84 | 0.90
Scenario 2 | PPMLE 0.65 | 0.74 | 0.87 | 0.92

Bridge 0.64 | 0.70 - -

Table 3: Estimated AUC for d = 300 variables,
for each method, sample size and scenario. The
standard errors of the estimates were calculated
and were found to be less than 1072,
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Fig. 5: Boxplot of the N = 100 SE values for d = 300 for scenarios 1 (top) and 2
(bottom)
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4 Real data application

To evaluate the practical performance of our proposed inference method, we applied
it to breast cancer multi-omics data from the International Cancer Genome Consor-
tium (ICGC) [10]. This dataset contains various molecular profiles, including gene
expression, protein abundance and mutation data, providing a comprehensive view of
tumor heterogeneity. Our objective was to infer regulatory interactions between these
molecular features and identify key network structures associated with breast cancer.
The pre-processed dataset used in this study is available on HAL [13]. Our variables
of interest includes protein expression (continuous), RNA sequencing (discrete) and
mutations (binary) measured on breast cancer tumoral tissue. The initial data set
included normalized protein abundance for 115 genes measured on 260 individuals,
RNA-seq counts for 20 501 genes observed on 939 individuals, and presence of 107
249 mutations observed on 918 individuals. As there were several samples per indi-
vidual, we averaged the RNA-seq and protein expression values. The binary variables
encoded if the mutations were present for at least one of the samples. Then, we used
the DESeq2 R package [18] to normalize the RNA-seq counts. The intersection of avail-
able data for all type of variables left us with 250 individuals. Finally, the 108 genes
found in common between the RNA-seq and protein data were kept, as well as the 62
mutations that were present in at least two donors. Note that among the 62 muta-
tions, 58 are present on genes that are not concerned by the RNA-seq and protein
expression measurements. In the end, the final dataset contained 278 variables (108
protein expression, 108 RNA-seq counts, 62 mutations) observed on 250 individuals.
Note that our RNA-seq counts have a median value of 3706.

The precision matrix ) was inferred via the graphical lasso applied to the estimate
of the copula correlation matrix obtained from pseudo pairwise likelihood estimation.
Estimates Q2 of Q were computed for each value of \ in a grid with values between zero
and one. As the dataset comprise count data with a large number of distinct values,
and large values of counts, the method of bridge functions was too computationally
expensive and could not be applied.

Figure 6 shows the proportion of kept edges per variable type depending on the
values of the penalization parameter \. We can see that the proportion of detected
edges decreases faster for RNA-protein and mutation-mutation pairs, while the other
curves behave similarly.
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Fig. 6: Proportion of detected edges for each pair of variable types as a function of
the penalization parameter \.

The HBIC criterion was used to choose the penalization parameter, and an optimal
value of A = 0.53 was found, as illustrated in Figure 7. The conditional correlation
graph obtained for this optimal value is given in Figure 8. Table 4 shows the number of
edges per variable type. As shown in Figure 8 and Table 4, the larger number of links
identified in the network is within proteins for one major cluster, and within RNA-
seq counts for a second major cluster. Note that both clusters are strongly connected,
with 64 links between them. A fewer number of links are identified within mutations
(45), and only 9 (resp. 4) links between mutations and proteins (resp. genes).

7001
6001
<
Q
% 5001
4001
300
0.2 0.4 0.6
A

Fig. 7: Values of HBIC(A), 0.05 < A < 0.75.
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Fig. 8: Estimated network between the RNA-seq counts (yellow diamonds), pro-
teins (blue circles) and mutations (green squares) with the optimal value of A = 0.53
returned by the HBIC criterion.
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Variable type Number of edges
protein-protein 125
RNA-RNA 106
RNA-protein 64
mutation-mutation 45
protein-mutation 9
RNA-mutation 4
Total 353

Table 4: Number of edges for the
optimal lambda.
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Fig. 9: Histogram of the degrees of the nodes in the selected network.

Figure 9 shows a histogram of the degrees of the nodes in the obtained graph. Only
ten of them have over ten connected edges. These nodes correspond to the genes and
proteins given in Table 5. It is interesting to note that all of them have been found to
be related to breast cancer. The scientific references presenting these results are given
in Table 5. Furthermore, for several of these nodes, we identified both the gene and the
related protein. It is the case for GATA3 and ESR1. Figure 10 presents the subgraph
corresponding to the neighborhoods of genes and proteins from Table 5. Overall, the
nodes with the highest number of edges are linked to each other in two main hubs:
one consisting of proteins, the other one of mostly RNA-seq counts. Two mutations
are included in the graph: MU4807 and MU17289. They are related to genes TP53
and CDKN1B, which are known to have an influence on breast cancer [19, 20]. One of
the scientific articles [21] also showed a link between gene CCNE1 and gene ANLN.
This link was successfully identified with our network inference procedure as shown in
Figure 10.

16



Variable Type degree | Reference
CCNE1 | RNA-seq 16 [22]
GATA3 | RNA-seq | 16 [23]
ESR1 RNA-seq 16 [24]
INPP4B | RNA=seq | 15 [25]
YBX1 | RNA=seq | 14 [26]
ANXA1 | RNA=seq | 13 [27]
ESR1 protein 13 [24]
GATA3 protein 13 (23]
STMN1 | RNA-seq 12 (28]
CDH2 protein 11 [29]

Table 5: Genes and proteins with
degree larger than ten.

&

Fig. 10: Subgraph corresponding to the neighborhoods of genes (resp. proteins) from
Table 5, represented as red diamonds (resp. circles). The mutations are represented
as green squares, the other genes as yellow diamonds and the other proteins as blue
circles.
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Fig. 11: Pairs of proteins (blue circles) and RNA-seq (yellow diamonds) not linked to
any other node in the main graph presented in Figure 8.

Additionally, among the nodes outside the main clusters of the network in Figure
8, a few independent pairs of proteins and genes have been identified and are presented
in Figure 11. It is interesting to notice that each of these pairs of RNA-seq and protein
corresponds to a single gene.

5 Discussion

In this study, we proposed a Gaussian copula model for multi-omics network infer-
ence, with a pairwise-likelihood estimation and graphical lasso regularization. In an
extensive simulation study, we showed that the proposed pairwise-likelihood estima-
tion method proved to be more effective as compared to moment-based methods using
bridge functions. Its computational time is not impacted by the analysis of discrete
variables with a large number of categories. It performs well in terms of AUC even
in the case of large discrete values, which are poorly handled by the bridge functions
estimation.

The above results have shown relevance of PPMLE estimation as opposed to bridge
functions when inferring biological networks that involve, for instance, RNA-seq count
data which often have large values and many categories. When applied to ICGC breast
cancer data, our method has successfully identified biologically relevant interactions.
For instance, it recovered direct links between proteins and RNA-seq counts belonging
to a same gene. It also highlighted hubs of biologically important variables linked to
breast cancer.

18



Several challenges will be worthwhile investigating in future work. The selection
of the optimal regularization parameter remains crucial for balancing sparsity and
accuracy in network estimation. We proposed in this study to use the HBIC selection
criterion, but further exploration of adaptive penalization techniques may enhance
model selection.

In order to improve the biological interpretation of the results, it would be inter-
esting to further investigate the link between the precision matrix of the copula and
the conditional independence relationships of the observed variables.

Overall, our approach provides a computationally efficient and robust tool for net-
work inference in high-dimensional multi-omics data, enriching the toolkit for genomic
data analysis.
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Appendix A Simulation of the precision matrix

First, a matrix Q is simulated via Algorithm 1. Note that the Watts-Storgatz approach
is implemented in the igraph package [30], and that the last step is necessary to ensure
positive definiteness of €.

Algorithm 1 Simulation of Q for p variables (Zhang et al. [9])

Require: p > 0 the number of variables, r > 0 the number of non-null coefficients
Define a p x p matrix of zeroes Q
Randomly assign r/2 non-null coefficients by a Watts-Storgatz approach [16] in the
upper triangular part of Q
Fill these coefficients with ¢£(0.2,0.7) values
Q«Q+ Q7
diag(Q) « 1
Compute A, = min(Sp(Q))
diag(€) < [An| +0.01

Then, compute ¥ = Q~!. Because we suppose model (1) to be parametrized by
. . . . . 1 & 1 . ol
a correlation matrix, standardize it to obtain ¥ = A723A™2 where A = diag(2).
1= 1
Finally, compute our matrix of interest Q = X! = A2 QAz=.

Appendix B Details of inference methods

B.1 Estimation based on bridge functions

A first frequentist approach in order to estimate {2 has been given by Liu et al. in the
nonparanormal SKEPTIC [14] and consists in the following steps:
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1. Estimate Kendall’s 7 on the observed variables

2. Find the root of the corresponding bridge function in order to obtain the covariance
matrix ¥ between the latent Gaussian variables

3. Invert X in order to obtain €2 as described in section 2.2

Note that the difference with our estimation method comes from the additional step
while we directly estimate ¥ on the observed variables by PPMLE before inversion.
A theoretical expression for Kendall’s tau between two variables X; and X} is
given by:
Tjk = Corr (sign(Xj — X;)sign(X}, — X'k)) (B1)

where X ; and X, denote two independent copies of X; and Xj,. It can be estimated by

2 - -/ . -/
> sign(al — 2 )sign(z], — ) (B2)

1<i<i’<n

Tik = n(n—1)

Moreover, when both variables are continuous, we have the following result [31]:

Sk = 2sin (g ) (B3)
and it is sufficient to plug the estimator from equation (B2) into equation (B3) in
order to estimate X ;.
If at least one of the variables is binary, the estimator from equation (B2) holds

because sign(z} — m;/) =k — x;/ However, the bridge function becomes [15]:

ik = F(Sjk, A;)
= 4Py, 5(4,0)) — 20(A)) (B4)

where A; denotes the cutoff value for a latent variable Z; behind the binary variable
X,. In practice, one can estimate A; by Aj = & (1 - X;) and ijk by solving
F(t, A]) — 75 = 0. Similarly, in the case where both variables are binary, the bridge
function becomes

Tik = F(Zjk, Ay, Ag)
= 20y, (Aj, Ag) — 20(A;)D(Ay) (B5)

Finally, these expressions have been extended to the case of discrete variables with
more than two modalities [9]. In place of Kendall’s 7, a new rank statistic 7 is
introduced for the discrete-discrete and mixed cases in order to facilitate computation
of the bridge functions. When both variables are multinomial, we compute 73 on the
observed data as below:

2
n(n —1)

Y (@ -2 - ) (B6)

1<i<i’<n

Fip =
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We also get the associated bridge function

ik = E(Fk)
= F(ZjK, Az, Ay)

= 20> > Bx, (A1, Akm) = D B(A0) > B(Agm)} (B7)

1=1 m=1 1=1 =1
When X is discrete and X}, is continuous, we compute:

2

e

> (af - a¥)sign(z) — a}) (B8)

1<i<i’<n

The associated bridge function is given by:

Tjk = E(fjk)
F(X5, 45, Ag)

L

L
= 20> Py ,a(85,0) =2 @(A;)} (B9)
=1

=1

The main limit of this method is the lack of roots for the bridge functions when
the sample size n is not large enough, and the needed adaptation of the code as in
https://github.com/Aiying0512/LGCM. Also, the case when a binary variable takes
the same modality for all observations is not taken into consideration.

B.2 Pairwise densities

The densities fj j introduced in section 2.2 take the form below depending on the case.
For easier notation, let Fj(z;) = u, Fj/(xj/) =, Fj(z;—) = u— and ﬁ'j/(acj/—) =v—,
where z;— and z;— denote the points before x; and z;/ in the supports of Fj and
Fj/. If both variables are continuous, we have

F 1 Vw2 +d 1 (w)2 —28.., &1 (u)d (v
fjj’(xjazj’azjj/):—)exp < ( ) + ( ) JJ ( ) ( ))

2
2m(1 - X2, 2(1-%5)

If X; is continuous and X is discrete, we have

Fiir(@j, 20, 850) = @ (qu(v) — Ejj@_lW)) ) (q)_l(v—) - ij'q’_l(u))

2 2
1-32, 1-%2,
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If both variables are discrete, we have

5 v O l(v) — ;07 1(2) P t(v—) = %P7 1(2)
fjj,(xj,xj/,ij/):/u_<D < 1—2%, - 1_22‘7 dz
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Appendix C Graphical Lasso

Suppose that Z = (Z1, ..., Zq) ~ N(0,%) is a centered standardized Gaussian vector
of correlation matrix X. Its density is expressed as, for z = (z1,...,24):

1 7Ty "1y
f(z) = ———=exp () .
) (2m)4|Z| 2
Let 3P denote the estimator of the Pearson correlation matrix with elements:
1 ¢ i i
== 747
i=1

A natural log-MLE estimator of = X =1, for n independent realizations Z%, ..., Zé,
t=1,...,nis:

Q= aremax— > log| ——— exp [ — L 17d 1:---,4g
B g( = 2

1< Lo i i i
= argsrznax ( Zlog || — 5(3'1, T L 0T LI zd)>
i=1
n d d
1 zzz}gQ
= argma (nZlog|Q| ZZ 5 )
i=1 j:]. k=1
1
= argmax <1og|Q| ZZij Zz zk>
j=1k=1 n
d
= argmax <1og|Q| ZZQJ’CE’@J>
j=1k=1

= argmax log Q| — tr(Qnf )) .

Equation (4) is then obtained by penalizing the above likelihood.
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